Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 346: 123650, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402932

RESUMO

Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored. The results indicated that the PCBs were mainly dechlorinated via removing their double-flanked meta-chlorine, with their first-order kinetic constants following the order of PCB132 > PCB174 > PCB85 > PCB183 > PCB138. However, PCBs occurred great loss of stoichiometric mass balance during microbial transformation, suggesting the generation of other non-dehalogenation products and/or stable intermediates. The preferential transformation of (-)-atropisomers and generation of (+)-atropisomers were observed during PCB132 and PCB174 biotransformation with the enantiomeric enrichment factors of -0.8609 ± 0.1077 and -0.4503 ± 0.1334 (first half incubation times)/-0.1888 ± 0.1354 (second half incubation times), respectively, whereas no enantioselectivity occurred during PCB183 biotransformation. More importantly, although there was no carbon and chlorine isotope fractionation occurring for studied substrates, the δ13C values of dechlorination products, including PCB47 (-28.15 ± 0.35‰ âˆ¼ -27.77 ± 0.20‰), PCB91 (-36.36 ± 0.09‰ âˆ¼ -34.71 ± 0.49‰), and PCB149 (-28.08 ± 0.26‰ âˆ¼ -26.83 ± 0.10‰), were all significantly different from those of their corresponding substrates (PCB85: -30.81 ± 0.02‰ âˆ¼ -30.22 ± 0.21‰, PCB132: -33.57 ± 0.15‰ âˆ¼ -33.13 ± 0.14‰, and PCB174: -26.30 ± 0.09‰ âˆ¼ -26.01 ± 0.07‰), which further supported the generation of other non-dehalogenation products and/or stable intermediates with enrichment or depletion of 13C. These findings provide deeper insights into the anaerobic microbial transformation behaviors of PCBs.


Assuntos
Chloroflexi , Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Chloroflexi/metabolismo , Biodegradação Ambiental , Cloro/metabolismo , Anaerobiose , Biotransformação , Carbono/metabolismo , Isótopos/metabolismo , Dehalococcoides
2.
Environ Sci Pollut Res Int ; 31(11): 17472-17480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342836

RESUMO

China, one of the two dechlorane plus (DP) producers, might have become a major area of DP pollution. The environmental contamination status of DP in sediments across the whole of China has not yet been studied. In the current study, the pollution levels, spatial distribution, and compositions of DP were investigated comprehensively in surface sediments from 173 black-odorous urban rivers across China for the first time. Total DP concentrations varied from not-detected to 39.71 ng/g dw, with an average concentration of 3.20 ± 4.74 ng/g dw, which was polluted by local emission sources and presented significant differences among different sampling cities. Among the seven administrative regions of China, DP concentrations were the highest in South China and showed a decreasing trend from southeastern coastal areas to northwest inland regions. Spearman's correlation analysis suggested that the gross industrial output, gross domestic product, and daily wastewater treatment capacity were not the principal factors controlling the spatial distribution of DP. The fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) varied from 0.19 to 0.88, with those in most sediments falling in the range of DP technical product (0.60 ~ 0.80), suggesting no apparent stereoselective enrichment occurred. Moreover, the anti-Cl11-DP was detected in sediments (n.d. ~ 0.40 ng/g dw), which showed significantly and insignificantly positive correlation with the anti-DP levels and fanti, respectively, implying it might mainly originate from the byproduct of DP technical product rather than the dechlorination of anti-DP.


Assuntos
Retardadores de Chama , Hidrocarbonetos Clorados , Compostos Policíclicos , Poluentes Químicos da Água , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Hidrocarbonetos Clorados/análise , Compostos Policíclicos/análise , Rios , China
3.
Sci Total Environ ; 915: 170108, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232851

RESUMO

Organophosphate triesters (tri-OPEs) are a kind of widespread contaminants in the world, particularly in China, which is a major producer and user of tri-OPEs. However, tri-OPE pollution in urban river sediments in China remains unclear. In current work, we carried out the first nationwide investigation to comprehensively monitor 10 conventional and five emerging tri-OPEs in sediments of 173 black-odorous urban rivers throughout China. Concentrations of 10 conventional and five emerging tri-OPEs were 3.8-1240 ng/g dw (mean: 253 ng/g dw) and 0.21-1107 ng/g dw (68 ng/g dw), respectively, and significantly differed among the cities sampled but generally decreased from Northeast and East China to Central and West China. These spatial patterns suggest that tri-OPE pollution was mainly from local sources and was controlled by the industrial and economic development levels in these four areas, as indicated by the significant correlations between tri-OPE concentrations and gross domestic production, gross industrial output, and daily wastewater treatment capacity. Although the tri-OPE composition varied spatially at different sites, which indicated different tri-OPE input patterns, it was commonly dominated by tris(2-chloroethyl) phosphate, tris(2-ethylhexyl) phosphate, and tris(1-chloro-2-propyl) phosphate (conventional tri-OPEs) and bisphenol A-bis(diphenyl phosphate) and isodecyl diphenyl phosphate (emerging tri-OPEs). A risk assessment indicated that tri-OPEs in most sampling sediments had a low to moderate risk to aquatic organisms.

4.
Sci Total Environ ; 907: 168057, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37898190

RESUMO

Hexabromocyclododecanes (HBCDs) have become a global pollution problem, particularly in China-a major producer and user of HBCDs. However, little is known about the HBCD pollution status in urban rivers nationwide in China. In this study, we comprehensively investigated the pollution characteristics of HBCDs in 173 sediment samples from black-odorous urban rivers across China. Total HBCD concentrations ranged from not-detected to 848 ng/g dw, showing significant differences among the various sampling cities, but generally increasing from west to east China. This distribution pattern of HBCDs was strongly associated with the local industrial output, gross domestic product, and daily wastewater treatment capacity. α-HBCD was the predominant diastereoisomer in most sediments, with an average proportion of 63.8 ± 18.8 %, followed by γ-HBCD (23.8 ± 19.5 %) and ß-HBCD (12.4 ± 6.49 %), showing a significant increase of the α-HBCD proportions relative to those in HBCD commercial mixtures and an opposite trend for that of γ-HBCD. These results suggested that HBCDs might undergo isomerization from γ- to α-HBCD and biotic/abiotic degradation with preference for γ-HBCD. Of these conversions, the microbial degradation of HBCDs was further verified by the preferential transformation of (-)-α-, (+)-ß-, and (-)-γ-HBCDs and the detection of HBCD-degrading bacteria, including Dehalococcoides, Bacillus, Sphingobium, and Pseudomonas. A risk assessment indicated that HBCDs pose low to moderate risks to aquatic organisms in most black-odorous urban river sediments.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Rios , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Hidrocarbonetos Bromados/análise , China , Medição de Risco , Retardadores de Chama/análise
5.
Inorg Chem ; 62(49): 20306-20313, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000909

RESUMO

It has been proven that the introduction of disorder in the surface layers can narrow the energy band gap of semiconductors. Disordering the surface's atomic arrangement is primarily achieved through hydrogenation reduction. In this work, we propose a new approach to achieve visible-light absorption through surface phosphorization, simultaneously raising the energy band structure. In particular, the surface phosphorization of BixY1-xVO4 was successfully prepared by annealing them with a small amount of NaH2PO2 under a N2 atmosphere. After this treatment, the obtained BixY1-xVO4 showed distinct absorption in visible light. The surface phosphorization treatment not only improves the photocatalytic activity of BixY1-xVO4 but also enables visible-light photocatalytic overall water splitting. Furthermore, we demonstrate that this surface phosphorization method is universal for Bi-based composite oxides.

6.
Environ Sci Technol ; 57(45): 17338-17352, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902991

RESUMO

Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation is promising in in situ bioremediation of chloroethene-contaminated sites. The bioremediation efficiency of this approach is largely determined by the successful colonization of fastidious OHRB, which is highly dependent on the presence of proper growth niches and microbial interactions. In this study, based on two ecological principles (i.e., Priority Effects and Coexistence Theory), three strategies were developed to enhance niche colonization of OHRB, which were tested both in laboratory experiments and field applications: (i) preinoculation of a niche-preparing culture (NPC, being mainly constituted of fermenting bacteria and methanogens); (ii) staggered fermentation; and (iii) increased inoculation of CE40 (a Dehalococcoides-containing tetrachloroethene-to-ethene dechlorinating enrichment culture). Batch experimental results show significantly higher dechlorination efficiencies, as well as lower concentrations of volatile fatty acids (VFAs) and methane, in experimental sets with staggered fermentation and niche-preconditioning with NPC for 4 days (CE40_NPC-4) relative to control sets. Accordingly, a comparatively higher abundance of Dehalococcoides as major OHRB, together with a lower abundance of fermenting bacteria and methanogens, was observed in CE40_NPC-4 with staggered fermentation, which indicated the balanced syntrophic and competitive interactions between OHRB and other populations for the efficient dechlorination. Further experiments with microbial source tracking analyses suggested enhanced colonization of OHRB by increasing the inoculation ratio of CE40. The optimized conditions for enhanced colonization of OHRB were successfully employed for field bioremediation of trichloroethene (TCE, 0.3-1.4 mM)- and vinyl chloride (VC, ∼0.04 mM)-contaminated sites, resulting in 96.6% TCE and 99.7% VC dechlorination to ethene within 5 and 3 months, respectively. This study provides ecological principles-guided strategies for efficient bioremediation of chloroethene-contaminated sites, which may be also employed for removal of other emerging organohalide pollutants.


Assuntos
Chloroflexi , Cloreto de Vinil , Bactérias , Biodegradação Ambiental , Interações Microbianas
7.
Environ Sci Technol ; 57(37): 14036-14045, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37665676

RESUMO

Chloroethenes (CEs) as common organic pollutants in soil could be attenuated via abiotic and biotic dechlorination. Nonetheless, information on the key catalyzing matter and their reciprocal interactions remains scarce. In this study, FeS was identified as a major catalyzing matter in soil for the abiotic dechlorination of CEs, and acetylene could be employed as an indicator of the FeS-mediated abiotic CE-dechlorination. Organohalide-respiring bacteria (OHRB)-mediated dechlorination enhanced abiotic CEs-to-acetylene potential by providing dichloroethenes (DCEs) and trichloroethene (TCE) since chlorination extent determined CEs-to-acetylene potential with an order of trans-DCE > cis-DCE > TCE > tetrachloroethene/PCE. In contrast, FeS was shown to inhibit OHRB-mediated dechlorination, inhibition of which could be alleviated by the addition of soil humic substances. Moreover, sulfate-reducing bacteria and fermenting microorganisms affected FeS-mediated abiotic dechlorination by re-generation of FeS and providing short chain fatty acids, respectively. A new scenario was proposed to elucidate major abiotic and biotic processes and their reciprocal interactions in determining the fate of CEs in soil. Our results may guide the sustainable management of CE-contaminated sites by providing insights into interactions of the abiotic and biotic dechlorination in soil.


Assuntos
Poluentes Ambientais , Tricloroetileno , Cloreto de Vinil , Solo , Substâncias Húmicas , Acetileno , Halogenação
8.
Bioresour Technol ; 388: 129775, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722539

RESUMO

Microorganisms play key roles in the conversion of organic matter in foodwaste. However, both the microbially-mediated element (carbon/C and nitrogen/N) flows and associated microbial communities in foodwaste treatment plants (FWTPs) remain unclear. This study collected samples of different foodwaste treatment units from five full-scale FWTPs to analyze the C/N flows and microbial communities in foodwaste treatment processes. Results showed that 39.8-45.0% of organic carbon in foodwaste was converted into biogas. Hydrolytic acidogenic bacteria (e.g., Lactobacillus and Limosilactobacillus) and eukaryota (e.g., Cafeteriaceae, Saccharomycetales, and Agaricomycetes) were more abundant in feedstock and pretreatment units. Redundancy analyses showed that acidogens were major players in the transformation of foodwaste organic matter. Populations of W27 and Tepidanaerobacter were major contributors to the difference in conversion of C/N in these FWTPs. This study could support foodwaste treatment efficiencies improvement by providing insights into C/N flows and associated microbiota in FWTPs.

9.
Environ Pollut ; 334: 122111, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392866

RESUMO

Triclosan (TCS), a synthetic and broad-spectrum antimicrobial agent, is frequently detected in various environmental matrices. A novel TCS degrading bacterial strain, Burkholderia sp. L303, was isolated from local activated sludge. The strain could metabolically degrade TCS up to 8 mg/L, and optimal conditions for TCS degradation were at temperature of 35 °C, pH 7, and an increased inoculum size. During TCS degradation, several intermediates were identified, with the initial degradation occurring mainly through hydroxylation of aromatic ring, followed by dechlorination. Further intermediates such as 2-chlorohydroquinone, 4-chlorocatechol, and 4-chlorophenol were produced via ether bond fission and C-C bond cleavage, which could be further transformed into unchlorinated compounds, ultimately resulting in the complete stoichiometric free chloride release. Bioaugmentation of strain L303 in non-sterile river water demonstrated better degradation than in sterile water. Further exploration of the microbial communities provided insights into the composition and succession of the microbial communities under the TCS stress as well as during the TCS biodegradation process in real water samples, the key microorganisms involved in TCS biodegradation or showing resistance to the TCS toxicity, and the changes in microbial diversity related to exogenous bioaugmentation, TCS input, and TCS elimination. These findings shed light on the metabolic degradation pathway of TCS and highlight the significance of microbial communities in the bioremediation of TCS-contaminated environments.


Assuntos
Anti-Infecciosos , Triclosan , Triclosan/análise , Biodegradação Ambiental , Redes e Vias Metabólicas , Água
10.
Chemosphere ; 338: 139462, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437623

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has significantly increased the demand of disinfectant use. Chloroxylenol (para-chloro-meta-xylenol, PCMX) as the major antimicrobial ingredient of disinfectant has been widely detected in water environments, with identified toxicity and potential risk. The assessment of PCMX in domestic wastewater of Macau Special Administrative Region (SAR) showed a positive correlation between PCMX concentration and population density. An indigenous PCMX degrader, identified as Rhodococcus sp. GG1, was isolated and found capable of completely degrading PCMX (50 mg L-1) within 36 h. The growth kinetics followed Haldane's inhibition model, with maximum specific growth rate, half-saturation constant, and inhibition constant of 0.38 h-1, 7.64 mg L-1, and 68.08 mg L-1, respectively. The degradation performance was enhanced by optimizing culture conditions, while the presence of additional carbon source stimulated strain GG1 to alleviate inhibition from high concentrations of PCMX. In addition, strain GG1 showed good environmental adaptability, degrading PCMX efficiently in different environmental aqueous matrices. A potential degradation pathway was identified, with 2,6-dimethylhydroquinone as a major intermediate metabolite. Cytochrome P450 (CYP450) was found to play a key role in dechlorinating PCMX via hydroxylation and also catalyzed the hydroxylated dechlorination of other halo-phenolic contaminants through co-metabolism. This study characterizes an aerobic bacterial pure culture capable of degrading PCMX metabolically, which could be promising in effective bioremediation of PCMX-contaminated sites and in treatment of PCMX-containing waste streams.


Assuntos
COVID-19 , Desinfetantes , Rhodococcus , Humanos , Rhodococcus/metabolismo , Xilenos/metabolismo , Biodegradação Ambiental , Desinfetantes/metabolismo
11.
Water Res ; 243: 120360, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481998

RESUMO

1,2,5,6-tetrabromocyclooctane (TBCO) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), as safer alternatives to traditional brominated flame retardants, have been extensively detected in various environmental media and pose emerging risks. However, much less is known about their fate in the environment. Anaerobic microbial transformation is a key pathway for the natural attenuation of contaminants. This study investigated, for the first time, the microbial transformation behaviors of ß-TBCO and DPTE by Dehalococcoides mccartyi strain CG1. The results indicated that both ß-TBCO and DPTE could be easily transformed by D. mccartyi CG1 with kobs values of 0.0218 ± 0.0015 h-1 and 0.0089 ± 0.0003 h-1, respectively. In particular, ß-TBCO seemed to undergo dibromo-elimination and then epoxidation to form 4,5-dibromo-9-oxabicyclo[6.1.0]nonane, while DPTE experienced debromination at the benzene ring (ortho-bromine being removed prior to para-bromine) rather than at the carbon chain. Additionally, pronounced carbon and bromine isotope fractionations were observed during biotransformation of ß-TBCO and DPTE, suggesting that C-Br bond breaking is the rate-limiting step of their biotransformation. Finally, coupled with identified products and isotope fractionation patterns, ß-elimination (E2) and Sn2-nucleophilic substitution were considered the most likely microbial transformation mechanisms for ß-TBCO and DPTE, respectively. This work provides important information for assessing the potential of natural attenuation and environmental risks of ß-TBCO and DPTE.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Hidrocarbonetos Bromados/química , Cinética , Anaerobiose , Bromo , Biotransformação , Isótopos
12.
J Hazard Mater ; 457: 131781, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315412

RESUMO

Black-odorous urban rivers can serve as reservoirs for heavy metals and other pollutants, in which sewage-derived labile organic matter triggering the water blackening and odorization largely determine the fate and ecological impact of the heavy metals. Nonetheless, information on the pollution and ecological risk of heavy metals and their reciprocal impact on microbiome in organic matter-polluted urban rivers remain unknown. In this study, sediment samples were collected and analyzed from 173 typical black-odorous urban rivers in 74 cities across China, providing a comprehensive nationwide assessment of heavy metal contamination. The results revealed substantial contamination levels of 6 heavy metals (i.e., Cu, Zn, Pb, Cr, Cd, and Li), with average concentrations ranging from 1.85 to 6.90 times higher than their respective background values in soil. Notably, the southern, eastern, and central regions of China exhibited particularly elevated contamination levels. In comparison to oligotrophic and eutrophic waters, the black-odorous urban rivers triggered by organic matter exhibited significantly higher proportions of the unstable form of these heavy metals, indicating elevated ecological risks. Further analyses suggested the critical roles of organic matter in shaping the form and bioavailability of heavy metals through fueling microbial processes. In addition, most heavy metals had significantly higher but varied impact on the prokaryotic populations relative to eukaryotes.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Rios , Medição de Risco , Metais Pesados/análise , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos
13.
Proc Natl Acad Sci U S A ; 120(20): e2220725120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155857

RESUMO

Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.


Assuntos
Sulfatos , Enxofre , Sulfatos/metabolismo , Oxirredução , Enxofre/metabolismo , Sulfetos/metabolismo , Óxidos de Enxofre
14.
Environ Technol ; 44(24): 3698-3709, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35451932

RESUMO

The effects of two microelements, zinc and copper, on the aerobic co-metabolic removal of trichloroethylene (10 mg/L) by the isolate Pseudomonas plecoglossicida were investigated. The strain was previously isolated from a petroleum-contaminated site using toluene (150 mg/L) as substrate. Different concentrations (1, 10 and 100 mg/L) of microelements provided with SO42- and Cl- were tested. The results showed the supplement of Zn2+ and Cu2+ at the low concentration (1 mg/L) significantly enhanced cell growth. The removal efficiencies for toluene and trichloroethylene were also enhanced at the low concentration (1 mg/L) of Zn2+ and Cu2+. Compared to the control without zinc supplement, higher concentrations of zinc (10 and 100 mg/L) enhanced the removal efficiencies for both toluene and trichloroethylene in the first three days but showed some inhibitory effect afterward. However, the higher concentrations of Cu2+ (10 and 100 mg/L) always showed inhibitory to the toluene removal while showing inhibitory to the TCE removal after three days. For both Zn2+ and Cu2+, the anions SO42- and Cl- did not show significant difference in their effects on the toluene removal. A possible mechanism for Zn2+ and Cu2+ to enhance the removal of toluene and trichloroethylene would be their involvement in toluene oxygenase-based transformation processes. In addition, high concentrations of Zn2+ and Cu2+ ions could be removed from the liquid by the cells accordingly. The results imply a potential of supplementing low concentrations of zinc and copper to enhance bioremediation of the sites co-contaminated with toluene and trichloroethylene.


Assuntos
Tricloroetileno , Cobre , Água , Zinco , Tolueno , Biodegradação Ambiental
15.
Chemosphere ; 313: 137454, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470357

RESUMO

Chlorinated paraffins (CPs) were massively produced for varied industrial purposes, of which improper handling and consequent environmental release resulted in worldwide contamination. The present study investigated the occurrence and spatial distribution of short- and medium-chain chlorinated paraffins (SCCP/MCCPs) in 171 sediment samples from black-odorous urban rivers across China. Total SCCP and MCCP concentrations ranged from 8.3 to 9.4 × 104 (median: 1.1 × 103) ng/g dw, and from not-detected-value to 1.0 × 106 (median: 1.3 × 104) ng/g dw, respectively. No clear spatial distribution of SCCPs and MCCPs was observed since black-odorous urban rivers were polluted by point-sources of the SCCP/MCCPs. Significant positive correlations were identified between SCCP/MCCPs and total organic carbon, and between SCCP/MCCPs and other persistent organic matter, including polybrominated diethyl ethers, polychlorinated biphenyls, antibiotics, and plasticizers. The average ratios of MCCPs to SCCPs in most samples were divided into 11 and 16, implying the manufacturing and use of at least two types of CP technical mixtures in China. The composition of SCCP/MCCPs were similar to that in their commercial products. Ecological risk assessments by two approaches, including the Federal Environmental Quality Guidelines and Risk Quotient, both revealed that SCCP/MCCP in surface sediments confer an ecological risk. ENVIRONMENTAL IMPLICATION: SCCPs and MCCPs can be considered "hazardous materials" because of their massive production and their potential persistence, long-distance transfer, bioaccumulation potential, and toxicity. This research conducted a comprehensive study on SCCP/MCCP in black-odorous urban river sediments across China and revealed their environmental risk, which may improve understanding of SCCP/MCCP contamination characteristics.


Assuntos
Hidrocarbonetos Clorados , Hidrocarbonetos Clorados/análise , Parafina/análise , Rios , Monitoramento Ambiental/métodos , China , Medição de Risco
16.
Nanomaterials (Basel) ; 12(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807962

RESUMO

This paper studies the synergistic effect of total ionizing dose (TID) and displacement damage dose (DDD) in enhancement-mode GaN high electron mobility transistor (HEMT) based on the p-GaN gate and cascode structure using neutron and 60Co gamma-ray irradiation. The results show that when the accumulated gamma-ray doses are up to 800k rad(Si), the leakage-current degradations of the two types of GaN HEMTs with 14 MeV neutron irradiation of 1.3 × 1012 n/cm2 and 3 × 1012 n/cm2 exhibit a lower degradation than the sum of the two separated effects. However, the threshold voltage shifts of the cascode structure GaN HEMT show a higher degradation when exposed to both TID and DDD effects. Moreover, the failure mechanisms of the synergistic effect in GaN HEMT are investigated using the scanning electron microscopy technique. It is shown that for the p-GaNHEMT, the increase in channel resistance and the degradation of two-dimensional electron gas mobility caused by neutron irradiation suppresses the increase in the TID leakage current. For the cascode structure HEMT, the neutron radiation-generated defects in the oxide layer of the metal-oxide-semiconductor field-effect transistor might capture holes induced by gamma-ray irradiation, resulting in a further increase in the number of trapped charges in the oxide layer.

17.
Trends Biotechnol ; 40(9): 1061-1072, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35339288

RESUMO

The fate of organic pollutants in environmental matrices can be determined by degradation and humification. The humification process represents a promising strategy to remove organic pollutants, particularly those resistant to degradation. In contrast to the well-studied degradation process, the contribution and application prospects of the humification process for organic pollutant removal has been underestimated. The recent progress in synthesizing artificial humic substances (HS) has made directed humification of recalcitrant organic pollutants possible. This review focuses on degradation and humification of organic matter, especially recalcitrant organic pollutants. Challenges in understanding the contribution, underlying mechanisms, and artificial synthesis of HS for removing organic pollutants are also critically discussed. We advocate further investigating the humification of organic pollutants in future studies.


Assuntos
Poluentes Ambientais , Substâncias Húmicas/análise , Solo
18.
Elife ; 112022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142289

RESUMO

Recent human behavioral and neuroimaging results suggest that people are selective in when they encode and retrieve episodic memories. To explain these findings, we trained a memory-augmented neural network to use its episodic memory to support prediction of upcoming states in an environment where past situations sometimes reoccur. We found that the network learned to retrieve selectively as a function of several factors, including its uncertainty about the upcoming state. Additionally, we found that selectively encoding episodic memories at the end of an event (but not mid-event) led to better subsequent prediction performance. In all of these cases, the benefits of selective retrieval and encoding can be explained in terms of reducing the risk of retrieving irrelevant memories. Overall, these modeling results provide a resource-rational account of why episodic retrieval and encoding should be selective and lead to several testable predictions.


The human brain can record snapshots of details from specific events ­ such as where and when the event took place ­ and retrieve this information later. Recalling these 'episodic memories' can help us gain a better understanding of our current surroundings and predict what will happen next. Studies of episodic memory have typically involved observing volunteers while they perform simple, well-defined tasks, such as learning and recalling lists of random pairs of words. However, it is less clear how episodic memory works 'in the wild' when no one is quizzing us, and we are going about everyday activities. Recently, researchers have started to study memory in more naturalistic situations, for example, while volunteers watch a movie. Here, Lu et al. have built a computational model that can predict when our brains store and retrieve episodic memories during these experiments. The team gave the model a sequence of inputs corresponding to different stages of an event, and asked it to predict what was coming next. Intuitively, one might think that the best use of episodic memory would be to store and retrieve snapshots as frequently as possible. However, Lu et al. found that the model performed best when it was more selective ­ that is, preferentially storing episodic memories at the end of events and waiting to recover them until there was a gap in the model's understanding of the current situation. This strategy may help the brain to avoid retrieving irrelevant memories that might (in turn) result in the brain making incorrect predictions with negative outcomes. This model makes it possible for researchers to predict when the brain may store and retrieve episodic memories in a particular experiment. Lu et al. have openly shared the code for the model so that other researchers will be able to use it in their studies to understand how the brain uses episodic memory in everyday situations.


Assuntos
Memória Episódica , Humanos , Rememoração Mental , Redes Neurais de Computação , Neuroimagem
19.
Elife ; 102021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34704935

RESUMO

How does the human brain encode semantic information about objects? This paper reconciles two seemingly contradictory views. The first proposes that local neural populations independently encode semantic features; the second, that semantic representations arise as a dynamic distributed code that changes radically with stimulus processing. Combining simulations with a well-known neural network model of semantic memory, multivariate pattern classification, and human electrocorticography, we find that both views are partially correct: information about the animacy of a depicted stimulus is distributed across ventral temporal cortex in a dynamic code possessing feature-like elements posteriorly but with elements that change rapidly and nonlinearly in anterior regions. This pattern is consistent with the view that anterior temporal lobes serve as a deep cross-modal 'hub' in an interactive semantic network, and more generally suggests that tertiary association cortices may adopt dynamic distributed codes difficult to detect with common brain imaging methods.


Assuntos
Memória/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Eletrocorticografia , Feminino , Humanos , Masculino , Redes Neurais de Computação , Adulto Jovem
20.
Environ Pollut ; 290: 118060, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479159

RESUMO

As replacements for "old" organohalides, such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), "new" organohalides have been developed, including decabromodiphenyl ethane (DBDPE), short-chain chlorinated paraffins (SCCPs), and perfluorobutyrate (PFBA). In the past decade, these emerging organohalides (EOHs) have been extensively produced as industrial and consumer products, resulting in their widespread environmental distribution. This review comprehensively summarizes the environmental occurrence and remediation methods for typical EOHs. Based on the data collected from 2015 to 2021, these EOHs are widespread in both abiotic (e.g., dust, air, soil, sediment, and water) and biotic (e.g., bird, fish, and human serum) matrices. A significant positive correlation was found between the estimated annual production amounts of EOHs and their environmental contamination levels, suggesting the prohibition of both production and usage of EOHs as a critical pollution-source control strategy. The strengths and weaknesses, as well as the future prospects of up-to-date remediation techniques, such as photodegradation, chemical oxidation, and biodegradation, are critically discussed. Of these remediation techniques, microbial reductive dehalogenation represents a promising in situ remediation method for removal of EOHs, such as perfluoroalkyl and polyfluoroalkyl substances (PFASs) and halogenated flame retardants (HFRs).


Assuntos
Retardadores de Chama , Bifenilos Policlorados , Animais , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Humanos , Parafina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...